Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 20(1): 589-600, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565984

RESUMO

Previous studies have shown that endoplasmic reticulum (ER) stress serves an important role in shaping the immunosuppressive microenvironment by modulating resident immune cells. However, the communication between ER-stressed tumor cells and immune cells is not fully understood. Exosomes have been reported to play a vital role in intercellular communication. Therefore, in order to investigate the role of ER stress-related exosomes in liver cancer cells mediated macrophage function remodeling, immunohistochemical analysis, western-blotting immunofluorescence and cytokine bead array analyses were performed. The results demonstrated that glucose-regulated protein 78 (GRP78) expression was upregulated in human liver cancer tissue. Moreover, 69.09% of GRP78-positive liver cancer tissues possessed macrophages expressing CD68+ (r=0.55; P<0.001). In addition to these CD68+ macrophages, interleukin (IL)-10 and IL-6 expression levels were increased in liver cancer tissues. It was also demonstrated that exosomes released by ER-stressed HepG2 cells significantly enhanced the expression levels of several cytokines, including IL-6, monocyte chemotactic protein-1, IL-10 and tumor necrosis factor-α in macrophages. Furthermore, incubation of cells with ER stress-associated exosomes resulted inactivation of the Janus kinase 2/STAT3 pathway, and inhibition of STAT3 using S3I-201 in RAW264.7 cells significantly reduced cytokine production. Collectively, the present study identified a novel function of ER stress-associated exosomes in mediating macrophage cytokine secretion in the liver cancer microenvironment, and also indicated the potential of treating liver cancer via an ER stress-exosomal-STAT3 pathway.

2.
Oncotarget ; 8(17): 28711-28724, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28404925

RESUMO

Our previous studies have suggested a protective role for H. pylori infection in the prognosis of gastric cancer. Based on those findings, we hypothesized that H. pylori-positive and -negative gastric cancers may exhibit different growth patterns and pathobiological behaviors, indicating different mechanisms of cancer progression. By microarray analysis, we studied miRNAs expression profiles in 42 gastric cancer patients, comparing 21 H. pylori-positive and 21 H. pylori-negative groups. Luciferase reporter assay and western blot were used to examine the potential target genes of the interested miRNA. In the present study, 53 miRNAs were significantly differentially expressed in H. pylori-positive and -negative gastric cancer tissues. We investigated the expression and function of one candidate, miR-143-3p, which was the most significantly increased miRNA in H. pylori-positive gastric cancer tissues. We observed that miR-143-3p expression was significantly decreased in gastric cancer tissues and cells, which correlated with late stage and lymph node metastasis. Using gain- and loss-of-function experiments in vitro, we demonstrate that miR-143-3p negatively regulated cell growth, apoptosis, migration and invasion. We further characterized AKT2 as a novel direct target of miR-143-3p. Knockdown of AKT2 expression mimicked the effects of miR-143-3p restoration. In conclusion, our data suggest that miR-143-3p acts as a novel tumor suppressive miRNA by regulating tumor growth, migration and invasion through directly targeting AKT2 gene. Further investigation is warranted to characterize the mechanisms underlying gastric cancer progression and may eventually contribute to its therapy.


Assuntos
Infecções por Helicobacter/imunologia , Helicobacter pylori/fisiologia , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/imunologia , Regiões 3' não Traduzidas/genética , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/genética , Infecções por Helicobacter/mortalidade , Humanos , Metástase Linfática , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Análise de Sobrevida , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...